Acid-Sensing Ion Channels 2a and 3 Heteromultimerize to Form pH-Sensitive Channels in Mouse Cardiac Dorsal Root Ganglia Neurons

نویسندگان

  • Tomonori Hattori
  • Jie Chen
  • Anne Marie S. Harding
  • Margaret P. Price
  • Yongjun Lu
  • Francois M. Abboud
  • Christopher J. Benson
چکیده

Rationale: Acid-sensing ion channels (ASICs) are Na channels that are activated by acidic pH. Their expression in cardiac afferents and remarkable sensitivity to small pH changes has made them leading candidates to sense cardiac ischemia. Objective: Four genes encode six different ASIC subunits, however it is not yet clear which of the ASIC subunits contribute to the composition of ASICs in cardiac afferents. Methods and Results: Here, we labeled cardiac afferents using a retrograde tracer dye in mice, which allowed for patch-clamp studies of murine cardiac afferents. We found that a higher percentage of cardiac sensory neurons from the dorsal root ganglia respond to acidic pH and generated larger currents compared to those from the nodose ganglia. The ASIC-like current properties of the cardiac dorsal root ganglia neurons from wild-type mice most closely matched the properties of ASIC2a/3 heteromeric channels. This was supported by studies in ASIC-null mice: acid-evoked currents from ASIC3 / cardiac afferents matched the properties of ASIC2a channels, and currents from ASIC2 / cardiac afferents matched the properties of ASIC3 channels. Conclusions: We conclude that ASIC2a and -3 are the major ASIC subunits in cardiac dorsal root ganglia neurons and provide potential molecular targets to attenuate chest pain and deleterious reflexes associated with cardiac disease. (Circ Res. 2009;105:279-286.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation.

Sensory neurons that innervate the heart sense ischemia and mediate angina. To use patch-clamp methods to study ion channels on these cells, we fluorescently labeled cardiac sensory neurons (CSNs) in rats so that they could later be identified in dissociated primary culture of either nodose or dorsal root ganglia (DRG). Currents evoked by a variety of different agonists imply the importance of ...

متن کامل

Acid sensing ion channels in dorsal spinal cord neurons.

Acid-sensing ion channels (ASICs) are broadly expressed in the CNS, including the spinal cord. However, very little is known about the properties of ASICs in spinal cord neurons compared with brain. We show here that ASIC1a and ASIC2a are the most abundant ASICs in mouse adult spinal cord and are coexpressed by most neurons throughout all the laminas. ASIC currents in cultured embryonic day 14 ...

متن کامل

Properties of acid‐induced currents in mouse dorsal root ganglia neurons

Acid-sensing ion channels (ASICs) are cation channels that are activated by protons (H(+)). They are expressed in neurons throughout the nervous system and may play important roles in several neurologic disorders including inflammation, cerebral ischemia, seizures, neurodegeneration, anxiety, depression, and migraine. ASICs generally produce transient currents that desensitize in response to a ...

متن کامل

Effect of deep tissue incision on pH responses of afferent fibers and dorsal root ganglia innervating muscle.

BACKGROUND Understanding the mechanisms underlying deep tissue pain in the postoperative period is critical to improve therapies. Using the in vitro plantar flexor digitorum brevis muscle-nerve preparation and patch clamp recordings from cultured dorsal root ganglia neurons innervating incised and unincised muscle, the authors investigated responses to various pH changes. METHODS Incision inc...

متن کامل

Changes in skin levels of two neutotrophins (glial cell line derived neurotrophic factor and neurotrophin-3) cause alterations in cutaneous neuron responses to mechanical stimuli.

Neurotrophins are important for the development and maintenance of both high and low threshold mechanoreceptors (HTMRs and LTMRs). In this series of studies, the effects of constitutive overexpression of two different neurotrophins, neurotrophin-3 (NT-3) and glial cell line derived neurotrohic factor (GDNF), were examined. Previous studies indicated that both of them may be implicated in the no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009